
Orchestrating Computation and Physical Dynamics:

Response to RFI for NITRD

Edward A. Lee, UC Berkeley, eal@eecs.berkeley.edu

August 21, 2008

This response considers the orchestration of com-
puting with physical processes. It argues that to re-
alize its full potential, the core abstractions of com-
puting need to be rethought to incorporate essential
properties of physical dynamics. All branches of com-
puting, networking, and systems theory are affected,
resulting in a research agenda that can only be effec-
tively pursued as a national or international effort.

Most microprocessors today are embedded in sys-
tems that are not first-and-foremost computers.
They are cars, medical devices, instruments, com-
munication systems, industrial robots, toys, games,
etc. Key to these microprocessors is their interac-
tion with physical processes through sensors and ac-
tuators. Such microprocessors increasingly resemble
general-purpose computers. They are becoming net-
worked and intelligent, often at the cost of reliability.
At the same time, general-purpose computers are in-
creasingly being asked to perform complex interac-
tions with physical processes. They integrate me-
dia such as video and audio, and through the migra-
tion to handheld platforms and pervasive computing,
sense physical dynamics and control physical devices.

The foundations of computing do not support this
mission well. In the Turing-Church abstraction, com-
putation is about the transformation of data, not
about physical dynamics. This abstraction deliber-
ately omits the passage of time, an essential property
of physical dynamics.

Computer scientists and engineers have heavily ex-
ploited this omission. The central fact is that “cor-
rect” execution of nearly any computer program has
nothing to do with how long it takes to do any-
thing. Engineers have to step outside the program-

ming abstractions to specify timing properties. Tim-
ing needs to become a correctness property rather
than a quality of service measure. This requires pro-
found changes in computing and networking.

Computers have become so fast that surely the pas-
sage time in most physical processes should be able
to be handled without special effort. But then why is
the latency of audio signals in modern PCs as large
as it was 20 years ago? Audio processes are quite
slow by physical standards, and a latency of a large
fraction of a second is enormous. To achieve good au-
dio performance in a computer (e.g. in a set-top box,
which is required to have good audio performance),
engineers are forced to discard many of the innova-
tions of the last 30 years of computing. They often
work without an operating system, without virtual
memory, without high-level programming languages,
and without memory management, and they use mi-
croprocessors without caches, dynamic dispatch, or
speculative execution. Those innovations are built
on the key premise that time is irrelevant to correct-
ness. By contrast, what these systems need is not
faster computing, but physical actions taken at the
right time. It needs to be a semantic property, not a
quality factor.

But surely the “right time” is expecting too much,
the reader may object. The physical world is neither
precise nor reliable, so why should we demand this
of computing systems? Instead, we must make the
systems robust and adaptive, building reliable sys-
tems out of unreliable components. Clearly systems
need to be designed to be robust, but we should not
blithely discard the reliability we have. Electronics
technology is astonishingly precise and reliable, more

1

The opinions and positions in the white papers and comments posted on this web site are those of the submitters only and do not necessarily represent those of the Federal government, 
the NITRD program and its participating agencies, or the National Coordination Office.



than any other human invention. We routinely de-
liver circuits that will perform a logical function es-
sentially perfectly, on time, billions of times per sec-
ond, for years. Shouldn’t we exploit this remarkable
achievement?

This problem is going to get worse. As embed-
ded systems become more networked and intelligent,
their character fundamentally changes. They are no
longer black boxes, designed once and immutable in
the field. Instead, they are pieces of a larger system,
a dance of electronics, networking, and physical pro-
cesses. An emerging buzzword (that few seem partic-
ularly fond of) for such systems is cyber-physical sys-
tems (CPS). Such systems will unquestionably have
an enormous impact on technical dominance.

Applications of CPS have the potential to rival the
20-th century IT revolution. They include high con-
fidence medical devices and systems, assisted living,
traffic control and safety, automotive systems, pro-
cess control, energy conservation, environmental con-
trol, avionics, instrumentation, critical infrastructure
control (electric power, water resources, and commu-
nications systems for example), distributed robotics
(telepresence, telemedicine), defense systems, manu-
facturing, and smart structures. It is easy to envision
new capabilities that are technically well within strik-
ing distance, but that would be extremely difficult to
deploy using today’s methods. Consider, for exam-
ple, a city with no traffic lights, where each car pro-
vides the driver with adaptive information on speed
limits and clearance to pass through intersections.
We have in hand all the technical pieces for such a
system, but achieving the requisite level of confidence
in the technology seems decades off.

The challenge of integrating computing and physi-
cal processes has been recognized for some time, hav-
ing motivated for example the emergence of hybrid
systems theories. These theories blend the dynamical
systems models of electrical engineers with automata
models of computer scientists. But the effort needs to
extend beyond systems theories into the abstraction
stack on which engineers build applications. Today’s
computing and networking technologies unnecessarily
impede progress towards CPS applications, and dy-
namical systems theories unnecessarily omit software
and network behavior.

The solution pervades the abstraction stack. Be-
ginning bottom-up, computer architects have gone
overboard exploiting the irrelevance of timing to
achieve better performance. Multi-level caches, dy-
namic dispatch, speculative execution, and bus archi-
tectures are all notable culprits. The research chal-
lenge is to achieve comparable performance with pre-
dictable and repeatable timing.

Continuing up the stack, there is a long history
of attempts to insert timing features into program-
ming languages. These are generally done, however,
without fundamental changes in the semantics of the
languages, particularly with regard to concurrency.
Domain-specific languages with temporal semantics
(e.g. Simulink, LabVIEW) have firmly taken hold
in some areas, showing that there are alternatives.
These are radically different from imperative and
functional languages that dominate the programming
language community. But they remain outside the
mainstream of software engineering, are not well inte-
grated into software engineering processes and tools,
and have not benefited from many innovations such
as data abstraction and strong type systems.

An attractive alternative to new programming lan-
guages is notations that work at the level of tasks or
components. These are attractive because they can
exploit experience with conventional imperative or
functional languages, which can be used to specify
detail functionality, and they can embrace models of
physical systems. Various innovations in coordina-
tion languages and actor models look promising, but
require adaptation to express temporal dynamics. I
envision an innovation like what C++ did to C, which
provided language support for object-oriented design.
For example, an actor model with temporal dynam-
ics could be supported by a C++++ that introduced
notations for expressing concurrency and timing.

Similar research will be needed in systems theory,
semantics, verification, security, operating systems,
and networking. The emphasis needs to be on pre-
dictable repeatable dynamics rather than on perfor-
mance optimization. This requires more than incre-
mental improvements, which will, of course, continue
to help. But effective orchestration of computing and
physical processes requires semantic models that re-
flect properties of interest in both.

2

The opinions and positions in the white papers and comments posted on this web site are those of the submitters only and do not necessarily represent those of the Federal government, 
the NITRD program and its participating agencies, or the National Coordination Office.




